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SUMMARY

The variation of pressure distribution is calculated for a two—
dimensional supersonic airfoil either experiencing a sudden angle—of—
attack change or entering a sharp—edged gust. From these pressure
distributions the indicial 1ift functions applicable to unsteady
1ift problems are determined for the two cases. A close similarity
is shown to exist between the calculated functlons for varying free—
stream Mach number and the corresponding functlions in three—
dimensional incompressible flow for varying aspect ratio.

Results are presented which permit the determination of
maximum increment in 1ift coefficient attained by an unrestrained
airfoll during its flight through a gust. As an application of
these results, the minimum altitude for safe flight through a
specific gust is calculated for a particular supersonic wing of
given strength and wing loading.

INTRODUCTION

The study of the unsteady 1lift of wings in an incompressible
medium has been developed along two different lines. In refer—
ence 1, R. T. Jones introduced the concept of indicial 1ift
functions for wings of finlte aspect ratlo and, using as.a basis
the work of Wagner (reference 2) on the two—dimensional potential
theory of airfoils in nonuniform mction, has shown how the
celculation of 1ift under various conditicns of motion can be
offected., In reference 3, Theodorsen considered nonsteady moticn
in its relation to the genersl theory of aercdynamic instebility
and the determination of the aserodynamic forces cn harmonically
oscillating airfoils. This latter approach has been extended to
include high—-speed problems and in two recent papers Garrick and
Rubinow (references 4 and 5) have given results on flutter end
oscillating air—-force calculations for wings 1n supersonic flow.
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The presert report employs the method of attack introduced by
Jones and considers the case of a two—dimensional alrfoil moving
supersonically in an arbitrary manner, provided the assumptions of
small perturbation theory are satisfied. The principal contribution
lies in the determination of indicial pressure distributions which
are readily calculated in supersonic motion and from which indicial
1ift, drag, and pitching moments may be computed. From these
repults the Indicial 1lift functions are calculated explicitly.

The methods used to find the pressure distributions also afford
considerable insight into the same problem for airfoils at subsonic

speeds.

As an application of the analysis, the results are applied to
the special case of an unrestrained airfoil entering & sharp-edged
gust. The resultant forces are found to be comparsble in magni—

tude, for Mach numbers in the neighborhood of 1.3, to those given
in reference 1 for subsonic incompressible flow.

SYMBOLS
a speed of sound
c chord length
¢y section 1lift coefficlent
¢y, Indiclal 1ift coefficient for angle—of—attack change
c1 indicial 1ift coefficient for wing entering gust
4 acceleration of gravity
M free—stream Mach humber
m mass

ANp difference in pressures between lower and upper surfaces of
airfoil

a (épdvoz)
8 distance msasured in half—chord lengths

S area of wing

P perturbation static pressure
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o time in seconds
t trensformed time variable (See equations (7).)
T t/c
u perturbation velccity component in x direction
Vo free-stream veloclty
W perturbation velocity component in z dlrection
Vo z component of velocity of gust
W welght of wing
sZ Cartesian coordinates
a angle of attack
" 2m/pMSc
ol perturbation density
Po free—stream density
o area over which surface integral 1s evaluated
o) perturbation veloclty potential
Subscripts
o] free—stream conditions
1 variable of integration
u upper surface
1 lower surface

ANALYSIS

Derivation of Basic Differential Equation

The pressure distribution over an airfoil in & compressible

medivm is obtainable from the solution of a boundary value problem
associated with & particular second-order partial differential
equation. The derivation of the linearized form of this equation,

obtained under the assumptions of smell perturbation theory,
proceeds ag follows:
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Iet u,w be perturbation velocity components parallsel,
respectively, to the Cartesian axes x', z' and denote by
p perturbation pressure, by p perturbation density, and
by =a the velocity of sound. Then i1f t' denotes time,
V, 1s the constant free-stream velocity, and p, 18 the
constant free—stream density, the linearized Eulerian equations

are

ou ou 1 Bp
—— T e— -
ot! © dxt Py Bx'
(1)
ow ow - 1 Bp
—tVy — =~ —
ot! ox? Po oz!

The linearized equations of continuity and state are, respectively,

o v P+ <j =0 (2)
dt! °ax! ox! Bz '

_ 1
p = ;_E P (3)
[0} «

After the introduction of the perturbation velocity potential ¢
integration of equations (1) yields

Y 00 _ 1
SET + Vb S;T = - ;; P + const. (&)

while equations (2) and (3) glve the expression

24y, ‘> S - _§55>‘®
<§t' © 3%/ potio? x'2  dz! , 2




NACA TN No. 1621 5

The combination of equations (4) and (5) leads to the desired
partial differential equation

- 1 3% 6)

(1-M2) .
O0x'? 0z2'? agy 0x'Ot' ap? ot'?

where M 18 the free-stream Mach number.

_ Equation (6) can be reduced to the normalized form of the two-—
dimensional wave equation of mathematical physics by means of the
transformation

ct
i
o
o
ct

In these variables the equatlion is wriltten

% %0 %
- - =0 8
ot2  9x® 9z2 (©)

In accordance with the assumptions underlying the derivation of
equation (8), 1ts application to problems in airfoll theory is,

of course, limited to cases where the induced veloclties are small
corpared to the free-streem velocity and the effects of viscosity
do not alter the results of the poterntial flow solution.

The rectangular coordinate system associated with equation (6)
is fixed in the wing which 1s, in turn, i1mmersed 1In a free stream
of velocity V., directed along the positive x—-axls. The transforma—
tion introduced in equation (7) fixes the x,z cordinate system
in space so that the airfoll moves in the negative x direction and
the free—stream veloclty 1s zero. A distortion of the time axes
is also involved so that the differential equation appears in
canonical form. Equations (6) and (8) are, of course, well known
in the theory of ungteady motion end in the study of sound waves.
It 1g natursl that these two fields of study should yield the same
fundamental equations since, in small perturbation theory, the wing
may be thought of as a distribution of acoustic radlators.
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Solution For Given Boundary Conditions

The becundary conditions which are to be satisfied have the same
property as those encountered in steady—state thin—airfoil theory;
that is, the prescribed data are given in the z = 0 plane. The
particular problems with which this report deals are those of
finding pressure distributions over a flat plate. Thus, w will
be specified over & portion of the 2z = O plane and, elsevhere
throughout the plane, loading must be zero.

Two boundary—value problems are to be considered: first, the
case of an airfoil either starting from rest at a given angle of
attack a or experiencing along the entire chord & change a In
gtreem direction without a pitching motion, and second, the case
of a constrained wing entering a sherp-edged gust with a vertical
velocity wg. In the former case the motion 1is that of an airfoll
suddenly sinking without rotation. These boundary conditions are
more readily pictured with the eid of figure 1. Figure 1(a) shows
the conditions which must be satisfied in order to solve the angle—
of-attack problem. The trace of the leadlng edge of the wing
traverses the line x = — Mt, while the tralling edge lies on
x =¢ — Mt where c¢ 1s chord length. The region bounded by these
lines and the line t = O is the region occupied by the airfoil
as time passes. Since the axes are fixed and the sirfoil moves in
the negative x directlon, the velocity at which the airfoll
trevels determines the inclination of the loci of the leading— and
tralling-edge traces. Over the “"area" occupled by the airfoil in
the x,t plane, v must equal -Voa &and elsevhere no Jump in
pressure can occur. The gust problem (fig. 1(b)) does not differ
essentlally from the previous problem except that here the region
over which the modification of w 1is effective 1s not entirely
the region occupied by the airfoil but rather the region occupied
gsimiltaneouely by the airfoil and the gust. Fixing, for convenlence,
the edge of the gust along the t—axis, this axls will form the right—
hand boundary of the region over which w = — wq.

Since the partial differential equation 1s lineer and the
colutions are therefore edditive, these boundary conditions clearly
should fit the following physical event: a wing of trapezoidal
plan form, indicated in figure 2, flies at a steedy 1lift and angle
of attack prior to t =0; at t =0 the wing elther experiences
a change in angle of attack o with no pitching motion or enters
a sharp-edged gust of constant vertical velocity wy, the gust
extending from its edge to all negative values of x. The wing in
each case 1s then restralned so that, relative to the original wind
vector, the wing remains at an angle of attack a or, in the gust
case, continues fixed at the same angle of attack.
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The solution to similar boundary—value problems has been
discussed at length in reference 6. In that report the develop—
ment was adapted to the case where equation (8) represented the
steady—state equation for wing problems in three dimensions and
the characteristic cones of the equation had the lmmedlate physical
interpretation of Mach cones or infinitesimal shock disturbances.
Green's theorem was applied to solve the boundary-value problems
involved and it was shown that the solution obtained could be
interpreted as a surface digtribution of sources and doublets.
Finally, the difficulties arising in the discussion of the
singularities on the characterlstic coies and the integration of
the supersonic doublet were overcome through the introduction of
an integration technique which involved using the "finite part"
of the glven integrals.

The methods and conclusions obtained in reference 6 can be
adapted immediately to the problems discussed herein for the
mathematical reasoning remains almost identical. The physical
interpretations of the two cases must, of course, be modifiled.

Thus, the characteristic cones of the differential equations,

traces of which are shown in figures 1 and 3, are no longer the well~
known Mach cones; rather, they represent the distance to which a
disturbance occurring at a point fized by the apex of the cone

will travel in the time +t. Despite the fact that such physical
interpretations are undeniably useful in understanding and applylng
the results, the solution of the baslic differential equation for

the boundary values involved 1s quite independent of these material
dissimilarities. It follows that the methods developed and discussed
in detail in reference 6 can be applied directly to the given
problems with only minor changes in notation.

Referring to figure 1, it is evident that for supersonic flight
the air ahead of the wing 1s unaffected by the approach of the wing
and, further, that the induced velocities on the upper surface of
the airfoil are independent of the shape of the lower surface.
Consequently the pressure distribution will be found on the upper
surface, as if the alrfoll section were symmetrical, and then, for
the flat plate, the pressure distribution on the lower surface will
be equal in magnitude and opposite in sign. As in reference 6, the
golution to such a problem can be obtained from a distribution of
sources.

In the actual computation of the pressures over a sectlon
traveling at supersonic speeds, certain regions are conveniently
defined. These regions depend on the relative slope of the traces
of the leading and trailing edges and the trace of the character—
istic cone in the x,t plane (fig. 3). The perturbation veloclty
potential i1s gliven by the formula
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0 _‘;..‘aff: J.=__======-_dxl at (9)

(t-t1)2 — (%-x;)2 — 22

where o -is the area in the x,t plane of the regilon occupled by
the wing sectlion and bounded by the trace of the forecone from the
point x,z,t. If p, and p; denote, respectively, pressures on

the upper and lower surface of the wing

A\ - L 00 1) Lk o0
P PP, _ b0 (10)

—_ +V, —
q q Vo2 \ot! ox! VoM Ot

Using equations (9) and (10), direct calculation shows that for a
sudden angle—of-attack change, the following relatlons hold

Region A (between lines x = - Mt, x=-1t, and x=c¢ — Mt)

L o (11a)
=

It follows that in this region the steady—state Ackeret—type load
distribution has been attained.

Region B (between lines x =-—%t, x =1, and x = ¢ — Mt)

ne———— »
Ap hey 1 Mx+t M1 [ % X

—= — arc cos + — + arc sin — (11b)

q M1 T x+Mb xM 2 t -

Region ¢ (between lines x =t, t =0, and x = c — Mt)

Ap  ha
1 7 . (11c)

The result obtained for Region C is of particular interest since

it holds for airfolls at subsonic as well as supersonic speeds.

Moreover, the mechanice of the Interaction between the alrfoil and

the fluld are such that other methods of derivation, furnishing

added insight into the nature of the phenomenon, may be developed.

Consider a flat plate of infinite aspect ratio flying at a velocity

Vo either greater than or less than the velocity of gound &, in

the undisturbed air., The airfoil is assumed to undergo a change in

its motion at the time t = O so that subsequent to this time 1t .

has increased its angle of attack by the amount a«. It follows that

the sudden increment in 1ift can be calculated from a knowledge of
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the irduced effects on the alr produced by an added vertical veloccity
of the plate equal to -Voa. As a result of this vertical motlion two
plane Rayleigh waves will emanate from the plate, a compressicn wave
from the lower surface and an expansion wave from the upper surface.
The velocitles of the wave fronts are equal to &y, while the

induced velocitles in the waves are equel in magnitude to Vya.

The 1ift on the wing can be determined in two ways: <from
impulse relations and from energy considerations. In the former
case, assume that the fcrces per unlt span on the upper and lower
surfaces are f, &and fj;, respectively. After en elapse of time
At the wave fronts have advanced a distance apAt and each
includes a mass of alr equal to pyca At per unit span. From
Newton's second law of motion

(fz-fu)At = (pocaoAt) (2V°a)

and, converting to 1lift coefficlent,

1= = = —
épdvozc Vo M

Since the force is distributed uniformly along the chord this result

is the equivalent of equation (llc).

In the development of the theory of plane waves of small
amplitude (see, e.g., reference 7) Rayleigh and Lamb have shown
that the energy in a wave 1s divided equally into kinetlc and
potential energy. Denoting kinetlc energy by T,

T = %q, fff w2dxdyds

where w 1is the perturbation velocity within the wave. Since the
energy induced in the wave must result from work done on the plate,
it can be seen that

achb

(£1-Fy)Voatrt = % po\/P Voza?cdx
o
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or
(f1—F,)At = 2p Voo ca At

This equation is in agreement with the one obtained previously.

As a consequence of equation (llc) it follows that the
starting 1ift coefficient of an airfoil is equal to La/M for both
gubsonic and supersonic flight. The magnitude of c¢3; thus
increases as M becomes smaller and for incompressible theory,
where the velocity of sound 1s indefinitely large, must necesssrily
become infinite. This fact was known previously along with the
understanding that the indicial 1ift functlon experiences an
infinite discontinuity at t = 0. (See fig. 6.) For values of M
other than zero the starting 1lift is finite &nd a continuous 1lift

function results.

For a sudden gust with vertical velocity wy the following
expressions can be found for the corresponding regions

Region A
N b
2 ___ Yo (12a)
T v MM
Region B
A b Mx+t
_2 = 2 __ arc cos v (12b)
Vo o MP-1 *
Region C
Lp
—_— =0 12¢
3 (12¢)

APPLICATIONS AND DISCUSSIONS
Discussion of Load Distributions

Figure 4 shows the varilation of the loading on & section which,
while traveling at supersonic speed, is suddenly deflected to a new
angle of attack. The loading varies according to equation (11) for
each of the three regions A, B, and C of figure 3. At t = O +the
pressure is discontlnuous, Jumping from its original value, Just
before the sudden deflection in angle of attack, to ha/M Just
after the deflection. Figure 3 shows, however, that the initial
load distribution is modifled over the forward portion of the section
as tims increases since reglons A and B must be considered.
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For t S, the wing lies entirely in region A so that

M-1’
Ap ha
q M=l

and the loading has attained a static value agreeing with the Ackeret
type of distribution. The loading in region B varies between the two
constant values of regions A and C, dipping below that of region C
and having its minimum value at x = O.

The loading produced upon entering a sharp-edged gust is pictured
in figure 5. The loading in region C is zero’since that portion of
the wing is unaware of the change in stream conditions. Over the
forward portion of the airfoil (reglon A) the Ackeret type loading
corresponding to the modified angle of attack is in evidence and for

t;>ﬂEI extends over the entire chord of the wing. In region B -
the loading experiences a reduction in magnitude from the value over
the forward portion of the wing.

The load distributions which have been developed were obtained
for flight velocities in the supersonic regime. It 1s apparent,
however, that the basic differential equation is not restricted to
the case where M>1 and that the method of analysis affords a
means whereby transient load effects can be studied for subsonic
speeds. The essential difference between the latter problem and
the results derived here lies in the relative position of leadling—
and trailing-edge traces in the x,t plane and the trace of the
characteristic cone. Thus, for subsonic flight, the traca x = -t
does not cut across the region occupied by the airfoil; whereas the
cone stemming from the trailing—edge point c¢,0 does. A qualitative
picture of the problem is obtained if the analogy between the non—
steady two-dimensional case and three~dimensional wing theory is
used. The loading functions given in equation (11) are equivalent
to loading existing on a swept—forward tip of a three—dimensional
wing. Thus, in figure 1l(a), x can represent distance measured
sparwise, t can represent distance measured chordwise, and the
ghaded area can represent a portion of the plan form of the wing.
Using this analogy, the loading which has been determined is merely
load distribution over the swept—forward tip of a wing with constant
chord and supersonic leading edge. When the case of the alrfoll
gection traveling at subsonic speeds is to be considered, the problem
becomes one of determining the loading over the swept—forward tip of
a wing with constant chord and subsonic leading edge.
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Development of Indicial Lift Functions

Since section 1lift coefficilent, c¢1, 1s given by the expression

1 cAp

CT = =
L=5 T

the relations presented in equations (11) and (12) are sufficient
for the determination of CLy? indicial 1ift coefficient for change
in angle of attack, and ClLgs indicial 1ift coefficient for an
airfoll entering a gust. As a result of direct integration, the
following results are obtained.

rat t interval o<t

1+M
Lo,
CLCL = -ﬁ_ (138')
byt
= w0’ 1
“Tg = oV, (tha)
Second time interval L < S
1+M M-1
o = | 1= c-—Mt aro cog Foe—tMZ
Le x [ M\Z c

= ,/*ta—_mr} (13v)

R C . . c-Mt> . o Mc+tZM%¢
c = - * arc sin arc c¢os
Lg ﬂVOc KVO ’ M2_l C
(14b)
C
time int < b
ha
or = - (13¢)
to e
b -
oLy = — = | : (1ke)
Voo M1
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Values of the 1ift functions are plotted in figure 6 as
functions of s, the distance traveled by the airfoil measured in

2Mt
half—chord lengths where & = s—+ The curves shown were calculated

for values of M equal to 1.2, 1.31, and 1.46, since the asymptotic
values of CLy, and ch for the three cases agree with the values

glven in reference 1 for the subsonic wing at aspect ratios of o,
6, and 3, respectively. No direct analogy, of course, can be made
between the two cases. It is, however, worthy of note that the
variations in the indicial functions for the supersonic cese are of
the seme order of magnitude as those found in the finite—span
incompressible case. :

From a knowledge of the 1ift function resulting from & sudden
unit angle of attack,it 1s possible to express the lift corresponding
to a glven variable motion by considering the given motion as being
camposed of infinitesimal steps and summing the lifts corresponding
to each step. Mathematically, the problem corresponds to the use
of the indicial admittance in determining the current response for
an electric network and leads to the so—called superposition theorem
which can be written in the form

t! '
cL(t') = a(o) cr (t') +‘ZT cr, (t'-T') daéTT )dT'
d t!
= v/ Cla (t'-1') o (7*) av (15)

The primes on the variables in this equation indicate that trus time
1s used.

Motion of Airfoil in Gust

The results which have been obtained will now be applied to
determine the forces on an unrestrained airfoil entering a gust.
Since the motion of the wing i1s not prescribed it becomes necegsary
to equate the dynamical forces in order to relate the variables
involved. Neglecting pitching moment and using Newton's second law
of motion, :

dw
—_—= 16
n o= }:forces (16)

where w 1s the vertical velocity of the wing, m 1s the mass of
the wing, and the forces to be summed result from the 1ift on the
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wing and the impressed force resulting from the actlon of the gust.
By means of equation (15), equation (16) can be rewritten in the form

t'
d d )
mgr ‘1_8'&7[ org, (#'=T)a(T)ar = g2 crg (81)aS (1)

Introducing a change of varlables such that

T = gl gy, T1 = 51 &g
and setting
% i W= posgc
the equation becomes, finally,
da |, 4 T W,
nas * ﬁ»[ o1y (T-T1) @ (T,)dT, = ‘fol °Lg (T) (18)

Since afo) = o0, ‘equation (18) can be integrated to glve:

T T
7 i fo org (T1)dTy * -;-]j~/c: oLy (B-T1) @ (T1) &Ty = 0 (19)

f
!
I
i

which is an integral equation of the second kind with a variable
upper limit. The solution to thls equation can be obtained quite
patisfactorily by means of Liouville's me&hod of successive
gubstitution. Using the relation cg, = ua% and performing the

proper manipulations glves:

T

Vv 1
~LQcr =¢ T ---u/1 c ™~T,) ¢ T, )4T
Lo op = opg () =3 o1 (M) oz ()

1 T Ty

+ =/ ¢ T--T, )4T c T,-T2) ¢ To)dTo —..

uzhéﬁ Ly, ( 1) {l? Lo, (T 2) Lg ( 2)dT2 (20)
- puV MF-1

Equation (20) is known to converge uniformly for €P<-———If—

and in the applications of this report the maximum 1ift was always
experienced in the region of convergence.

The values of 1lift coefficlent cg, determined from the solutlon
of equation (20) are shown 1n figures 7(a), 7(p), and T(c) for
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various values of p and for M= 1.2, 1,31, and 1.46. Figure 8
shows the varilatlon of the maximum 1ift coefficient attalned plotted
as a function of the density parameter u for the same three values
of M. TFigure 9 furnishes a comparison between the maximum 1ift~
coefficient increment given in reference 1 for an aspect ratio of 6
and the correspondling value calculated in the present report for

M= 1.31. The results are plotted as functions of Hy = %%E to
correspond with the density parsmeter used by Jones. The
correspondence which was noted for the indicial 1lift fur-tions with
Mech number replacing wing aspect ratio 1s still in evidence.

Forces Developed on Given Wing

As an example of the uses to which the results Just obtained
can be applled, conslder an alrplane with wing of plan form such
as the one shown in figure 2. Assume a wing loading of 40 pounds
per square foot, a chord length of 8 feet, and let it be specified
that the wing is flying at a Mach number equal to 1.2 and that the
wing is bullt to withstand forces producing accelerations between
-3 and 5 times gravitational acceleration. It 1s proposed to find
at what altitudes the wing may be subJjected safely to a gust
possessing a vertical veloclty of 50 feet per second.

If F denotes total force on the wing,
F=W+Ig (21)

where W 1is wing weight and Lg 1is the total 1ift produced by the
gust. If CACL)max‘ is the maximum increment 1n 1lift coefficilent

attained in a unit gust and A is the acceleration factor measured
in multiples of g, then equation (21) is expressible in the form

W

=1+ o -
A=14(00) 5 7 PoVo

Since 1t is required that |A-1| S L4, it follows that

=

(o) < 6.
max PoVo

(22)

Figure 10 shows the limit curve of (ACL)max plotted as a function
of flight altitude. From a knowledge of u = 2W/p_gMSc, however,
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the value of (ACL)max actually attained by the wing entering the

gust can be calculated. Such values are elso included in figure 10
and indicete that, under the given conditions, the wing should not
fly at an altitude less than approximately 28,000 feet.

Ames Aercnautical Laboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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Figure 2.~ Type of plan form studled in analysis.
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Figure 3.~ Sketch indicating locations of regions A, B and
C and time intervals used in analysis.
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